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Synopsis

Sure to be influential, Watanabe’s book lays the foundations for the use of algebraic geometry in
statistical learning theory. Many models/machines are singular: mixture models, neural networks,
HMMs, Bayesian networks, stochastic context-free grammars are major examples. The theory

achieved here underpins accurate estimation techniques in the presence of singularities.
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Customer Reviews

"Overall, the many insightful remarks and simple direct language make the book a pleasure to

read." >

Sure to be influential, this book lays the foundations for the use of algebraic geometry in statistical
learning theory. Many widely used statistical models are singular: mixture models, neural networks,
HMMSs, and Bayesian networks are major examples. The theory achieved here underpins accurate

estimation techniques in the presence of singularities.

Statistical learning theory is now a well-established subject, and has found practical use in artificial
intelligence as well as a framework for studying computational learning theory. There are many fine

books on the subject, but this one studies it from the standpoint of algebraic geometry, a field which



decades ago was deemed too esoteric for use in the real world but is now embedded in myriads of
applications. More specifically, the author uses the resolution of singularities theorem from real
algebraic geometry to study statistical learning theory when the parameter space is highly singular.
The clarity of the book is outstanding and it should be of great interest to anyone who wants to study
not only statistical learning theory but is also interested in yet another application of algebraic
geometry. Readers will need preparation in real and functional analysis, and some good
background in algebraic geometry, but not necessarily at the level of modern approaches to the
subject. In fact, the author does not use algebraic geometry over algebraically closed fields (only
over the field of real numbers), and so readers do not need to approach this book with the heavy
machinery that is characteristic of most contemporary texts and monographs on algebraic
geometry. The author devotes some space in the book for a review of the needed algebraic
geometry.Also reviewed in the initial sections of the book are the concepts from statistical learning
theory, including the very important method of comparing two probability density functions: the
Kullback-Leibler distance (called relative entropy in the physics literature). The reader will have to
have a good understanding of functional analysis to follow the discussion, being able to appreciate
for example the difference between convergence in different norms on function space. From a
theoretical standpoint, learning can be different in different norms, a fact that becomes readily
apparent throughout the book (from a practical standpoint however, it is difficult to distinguish
between norms, due to the finiteness of all data sets). Of particular importance in early discussion is
the need for "singular” statistical learning theory, which as the author shows, boils down to finding a
mathematical formalism that can cope with learning problems where the Fisher information matrix is
not positive definite (in this case there is no guarantee that unbiased estimators will be available).
This is where (real) algebraic geometry comes in, for it allows the removal of the singularities in
parameter space by recursively using "blow-up" (birational) maps. The author lists several examples
of singular theories, such as hidden Markov models, Boltzmann machines, and Bayesian networks.
The author also shows to generalize some of the standard constructions in "ordinary" or "regular”
statistical learning to the case of singular theories, such as the Akaike information criterion and
Bayes information criterion. Some of the definitions he makes are somewhat different than what
some readers are used to, such as the notion of stochastic complexity. In this book it is defined
merely as the negative logarithm of the “evidence’, whereas in information theory it is a measure of
the code length of a sequence of data relative to a family of models. The methods for calculating the
stochastic complexity in both cases are similar of course.In singular theories, one must deal with

such things as the divergence of the maximum likelihood estimator and the failure of asymptotic



normality. The author shows how to deal with these situations after the singularities are resolved,
and he gives a convincing argument as to why his strategies are generic enough to cover situations
where the set of singular parameters, i.e. the set where the Fisher information matrix is degenerate,
has measure zero. In this case, he correctly points out that one still needs to know if the true
parameter is contained in the singular set, and this entails dealing with "non-generic" situations
using hypothesis testing, etc.Examples of singular learning machines are given towards the end of
the book, one of these being a hidden Markov model, while another deals with a multilayer
perceptron. The latter example is very important since the slowness in learning in multilayer
perceptrons is widely encountered in practice (largely dependent on the training samples). The
author shows how this is related to the singularities in the parameter space from which the learning
is sampled, even when the true distribution is outside of the parametric model, where the collection
of parameters is finite. This example leads credence to the motto that "singularities affect learning"
and the author goes on further to show to what extent this is a "universal" phenomenon. By this he
means that having only a "small" number of training samples will bring out the complexity of the
singular parameter space; increasing the number of training samples brings out the simplicity of the
singular parameter space. He concludes from this that the singularities make the learning curve
smaller than any nonsingular learning machine. Most interestingly, he speculates that "brain-like

systems utilize the effect of singularities in the real world."

Today program development is guided by best practices, traditions, and downright doctrinal
beliefs.Machine learning in particular has always been a set of magical techniques, especially when
applied to linguistic problems.Pr Watanabe is paving the way to a world where it is an actual
science.This is one of the most important books | know for the future of computer science
engineering.The problem is that reading this requires AfA bernerd level mathematics background
*and* mindset (do not wait for too much pedagogy). So chances are, if you are of mathematician

breed you will love it ; if your cursus is computer science engineering, it willl make you cry.
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